Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring

نویسندگان

  • Sungjin Ahn
  • Anoop Korattikara Balan
  • Max Welling
چکیده

In this paper we address the following question: “Can we approximately sample from a Bayesian posterior distribution if we are only allowed to touch a small mini-batch of data-items for every sample we generate?”. An algorithm based on the Langevin equation with stochastic gradients (SGLD) was previously proposed to solve this, but its mixing rate was slow. By leveraging the Bayesian Central Limit Theorem, we extend the SGLD algorithm so that at high mixing rates it will sample from a normal approximation of the posterior, while for slow mixing rates it will mimic the behavior of SGLD with a pre-conditioner matrix. As a bonus, the proposed algorithm is reminiscent of Fisher scoring (with stochastic gradients) and as such an efficient optimizer during burn-in.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Gradient Descent as Approximate Bayesian Inference

Stochastic Gradient Descent with a constant learning rate (constant SGD) simulates a Markov chain with a stationary distribution. With this perspective, we derive several new results. (1) We show that constant SGD can be used as an approximate Bayesian posterior inference algorithm. Specifically, we show how to adjust the tuning parameters of constant SGD to best match the stationary distributi...

متن کامل

Approximate Markov Chain Monte Carlo Algorithms for Large Scale Bayesian Inference

OF THE DISSERTATION Approximate Markov Chain Monte Carlo Algorithms for Large Scale Bayesian Inference By Anoop Korattikara Balan Doctor of Philosophy in Computer Science University of California, Irvine, 2014 Professor Max Welling, Chair Traditional algorithms for Bayesian posterior inference require processing the entire dataset in each iteration and are quickly getting obsoleted by the proli...

متن کامل

Privacy for Free: Posterior Sampling and Stochastic Gradient Monte Carlo

This is the supplementary file of the paper: “Privacy for Free: Posterior Sampling and Stochastic Gradient Monte Carlo”. In Appendix A, we provide deferred proofs of the results in the paper. In Appendix B, we describe the statistical analysis for OPS with general ✏. In Appendix C, we discuss a differential private extension of Stochastic Gradient Fisher Scoring (SGFS). The subsequent appendice...

متن کامل

Bayesian Learning via Stochastic Gradient Langevin Dynamics

In this paper we propose a new framework for learning from large scale datasets based on iterative learning from small mini-batches. By adding the right amount of noise to a standard stochastic gradient optimization algorithm we show that the iterates will converge to samples from the true posterior distribution as we anneal the stepsize. This seamless transition between optimization and Bayesi...

متن کامل

Learning Deep Generative Models with Doubly Stochastic MCMC

We present doubly stochastic gradient MCMC, a simple and generic method for (approximate) Bayesian inference of deep generative models in the collapsed continuous parameter space. At each MCMC sampling step, the algorithm randomly draws a minibatch of data samples to estimate the gradient of log-posterior and further estimates the intractable expectation over latent variables via a Gibbs sample...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012